Biodata of the Scientist

A.Personal information

1.Name(With Title): Dr. (Mrs.) G. Padmaja

1.a. Qualification: PhD Biochemistry

2. Designation: Principal Scientist & Head, Division of Crop Utilization

3. Address (Personal): Dr. G. Padmaja

Kalhara, BN 339, Ramavarma Lane, Bapuji Nagar, Pongummudu, Medical College P. O. Thiruvananthapuram- 695 011

4. Phone Numbers:

(a)Residence 0471 2446711(b) Intercom 0471 2598551 208 (c)Mobile 09847706711

5. Email: padmajabn@yahoo.com

6. Countries visited: UK, USA, Indonesia, Malaysia, Bangladesh

B. Professional information

1. Area of specialization: Biochemistry and Post harvest technology of tuber crops

2. Area of interest: Biochemistry of tuber crops with special reference to the utilization of tuber crops as food and feed and value addition.

3. Number of institute projects completed (Add list):

Standardization of ensiling techniques for cassava and sweet potato, (as PI)

Production technology for fried and baked food products from tuber crops (as PI)

Development of health drinks and instant food mixes from tuber crops (as PI)

Developing technology for Nutritionally fortified pasta and designer food products from tuber crops (as PI)

4. Number of Institute projects being handled (Add list):

(i). Studies on functional and specialty food products from tuber crops (as PI)

5. Number of externally funded projects completed(Add list):

Anti- nutrient factors in sweet potato, yams and aroids: Isolation, Biological variations and processing technologies for removal of proteinase and amylases inhibitors (As PI)

Primary processing and value addition of sweet potato and yams of self employment generation by women (AS PI)

Bio-processing of cassava and its cellulosic byproduct for the production of ethanol and butanol biofuels using novel eco-friendly enzyme systems (AS PI).

Overcoming key constrains to Productivity and Utilization by Genetic improvement of under utilized and neglected crops in low income deficit countries (As Co- PI)

Integrated technologies for the value addition and Post Harvest management in Palms, Spices and Tropical tuber crops (As Co- PI)

6. Number of externally funded projects being handled (Add list):

(i) Development of low glycaemic noodles from sweet potato and low calorie sago from cassava as antidiabetic foods (As PI)

7. Number of students guided for a) Ph.D: Six_b) M.Phil: None____c) M.Sc: 30

8. Number of students being guided for a) Ph.D: Four___b) M.Phil: None) M.Sc: One

8.a. information about the students under your guidance

Name of the student	Course undergoing	Title of the	E-mail address
	(Ph.D/M.Phil/M.Sc)	project/Thesis	
Dr.Sasikiran.K	PhD completed	Isolation,	
		characterization and	
		metabolic	
		significance of	
		trypsin and	
		chymotrypsin	
		inhibitors in tuber	
		crops	
Dr.M.R.Rekha	PhD completed	Biological variations,	
		metabolic	
		significance and	
		kinetic properties of	
		the amylase inhibitor	
		of tuber crops	
Dr. S. Pradeepkumar	PhD completed	Investigations on	
		allelochemicals in	

		orrouroot (Mananta	
		arrowroot (Maranta	
		arundinacea)	
DrJisha. S	PhD completed	Development of	
		functional foods from	
		cassava	
SmtRegy Johnson	PhD completed	Process optimization	
		and enzyme	
		technology for the	
		production of High	
		Fructose Syrup from	
		cassava and sweet	
		potato	
Dr. Lekshmi.S	PhD completed (As	Antitumour	
	Co-Guide)	properties of selected	
		medicinal plants of	
		Zingiberaceae	
Dr. Jyothi G	PhD completed	Process optimization	
Krishnan		for the production of	
		traditional and	
		functional pasta and	
		flakes from sweet	
		potato	
Smt. Renjusha	Ongoing	Process	
Menon		Biotechnology for	
		the Production of low	
		glycaemic spaghetti	
		from Sweet potato	
Smt. Pooja. N. S	Ongoing	Utilization of	
5		agricultural residues	
		from Cassava for	
		lignocellulosic	
		ethanol production	
Ms. Vani.M	Ongoing (As Co-	Biochemical soil	
	guide)	quality indices for	
	0	sustainable cassava	
		production	
Ms. Dhanya	Integrated MSc	Enhancing sweet	
Thankachan		potato starch	
		extractability using	
		enzyme	
		biotechnology and	
		utilization of starch	
		for food applications	
L	1	1	

9. Information on guide ship

Guide ship for Ph.D/ M.Phil/	University	Subject
M.Sc		

PhD	University of Kerala	Biochemistry
PhD	University of Kerala	Biotechnology
PhD	University of Kannur	Biochemistry
Integrated MSc	Kerala Agricultural	Food Biotechnology
	University	

10. Number of Research papers (Add list): Separately attached as Annexure I

- 11. Number of Books/Book chapters (Add list): Separately attached as Annexure II
- 12. Number of Technical Bulletins (Add list): Separately attached as Annexure III

13. Consultancies offered (Add list and give a brief description):

(i) Value added fried snack foods from cassava

Cassava tubers are highly perishable and cannot be stored for more than 2-3 days after harvest. Hence to avoid heavy post harvest losses, it is necessary to process them immediately. Technology has been perfected at CTCRI for making a number of extruded fried snack foods, having a variety of taste, appearance and mouth feel. Fortification is attempted in these products through the addition of Bengal gram flour, refined wheat flour (maida), rice flour, egg etc. The products were found to have protein content in the range of 5-10% and a low oil uptake was an added advantage. Five to ten times value addition is possible by converting fresh cassava tubers to fried products, which also have extended shelf life. Ten fried food products *viz.*, pakkavada, hot sticks, sweet fries, sweet dimons, salty fries, salty delight, murukku, crisps, nutrichips (with egg) and nutrichips (without egg) were prepared.

(ii) Improved technology for fried cassava chips

Fried tapioca chips is a traditionally important snack food of Kerala. Besides domestic market, the product also has export potential, owing to the cultural attachment towards tapioca by the Keralites abroad. Nevertheless, a major problem with regard to the market potential is the hardness, when compared to fried potato chips, besides other problems like inconsistency in product quality due to the wide variation in the initial raw material and high

cyanogens retention in the chips. Hence a new process was developed to make cassava chips softer and crisp through a pretreatment technology.

(iii) Functional pasta from cassava and sweet potato

Pasta products are getting wide acceptability as convenience foods in India. They are also regarded as health foods due to their 'lente' (ability to release glucose slowly to blood) property. Technology has been perfected at CTCRI top make a number of pasta products from cassava and sweet potato which include gluten free pasta, high protein and dietary fiber pasta, carotene and betanin enriched pasta etc.

(iii) Byproduct utilization of cassava as poultry feed

The edible snack food products from cassava (tapioca) utilize only the edible part of the tuber. The peel, which constitutes around 10% by weight of tuber, is a waste byproduct, which unless used properly will add to pollution load of the Process Units. Research at CTCRI has shown that the solid waste could be effectively converted to broiler feed, facilitating economic broiler farming.

(iv) Ensiling technology for cassava as cattle feed

Cassava tubers cannot be economically utilized for composite cattle feed manufacture due to their low protein content. However, it could be transformed into a shelf stable cattle feed through ensiling technology. The technology has been perfected at CTCRI which involve mixing chopped cassava tubers with rice straw in proportions of 9:1 and packing to silos. Silage will be ready within a week.

14. Technologies developed: Add list and give a brief description):

Same as above

15. Patents/Copyrights obtained (Add list and give a brief description):

A patent application entitled (Process for making high protein carotene rich pasta from sweet potato has been filed.

16. Any other information: (present)

- 1. Member- PG Committee
- 2. Member, Institute Technology Management Committee (ITMU)
- 3. Member, Institute Deputation Committee (IDC)
- 4. Major Advisor, Advisory Committee for Integrated MSc Biotechnology Course student, College of Agriculture, Vellayani
- 5. Recipient of ICAR Team Research Awards- Twice in 1986 and 1996

Annexure I

Research Publications

Sl.No.	Name(s) of Authors	Title of the paper	Name of the Journal, Vol.
			No. & Issue No.
1	G.Padmaja , C. Balagopalan and	Polyphenols and vascular	Cassava Newsletter, 10, 5-6.
	V.P.Potty	streaking in cassava	1982
2	G. Padmaja and	Biochemical changes due to	J. Food Sci. Technol. 19
	P. Rajamma	weevil (Cylas formicarius	(4),162-163, 1982
		Fab.) feeding on sweet potato	
3	G. Padmaja, C. Balagopalan	Cellulolytic, amylolytic and	J. Root Crops,
	and V.P.Potty	pectinolytic enzyme activities	(1&2), 35-40,
		of deteriorating cassava roots	1982
4	G. Padmaja	Evaluation of techniques to	J. Agric. Food Chemistry
		reduce assayable tannin and	(USA) 37: 712-716, 1989
		cyanide in cassava leaves	
5	GG. Padmaja	Cyanide detoxification in	CRC Critical Reviews in
		cassava for food and feed uses	Food Science & Nutrition
			(Published by CRC press,
			Boca Raton , Florida)
		~	35 (4): 299-339,1995
6	G. Padmaja and	Cellular and extracellular	J. Food Sci. Technol. 22 (2):
	C. Balagopalan	enzymes associated with the	82-87,1985.
		post harvest deterioration of	
7	C. Dadmaia and	cassava tubers Cyanide degradation by	Can. J. Microbiol. 31: 663-
/	G. Padmaja and C. Balagopalan	Cyanide degradation by <i>Rhizopus oryzae</i>	669,1985
8	G. Padmaja and	Pattern of enzyme changes in	Indian Journal of Expl.
0	K.R. Panikkar	rabbits administered linamarin	Biology
		or potassium cyanide	27 : 551-555, 1989
9	GG. Padmaja and K.R.	Intermediary metabolic	,
-	Panikkar	changes in rabbits	Biology
		administered linamarin or	27 : 635-639,1989
		potassium cyanide	
10	G. Padmaja and	Effect of molasses and urea on	Tropical Science (UK),
	C. Balagopalan	the silage fermentation of	31 : 257-264,1991
		cassava	
11	GG. Padmaja, Mathew George	Detoxification of cassava	Journal of the Science of
	and S.N. Moorthy	during fermentation with a	Food and Agriculture (UK)
		mixed culture inoculum	63, 473-481, 1993
12	GG . Padmaja, Mathew	Nutritional evaluation of the	Journal of Agricultural and
	George, S.N. Moorthy, Zoe	starchy flour obtained from	Food Chemistry (USA)
	Bainbridge, Vanessa Plumb, J.F.	cassava tubers on fermentation	42: 766-770,1994
	Wood and C.J. Powell	with a mixed culture inoculum	
13	GG. Padmaja, T. Premkumar,	Amino acid and sugar profiles	Tropical Science (UK)
	Vanessa Plumb, Zoe Bainbridge	of insect infested and	34 : 409-451,1994
	and J.F. Wood	uninfested plain dried versus	

		parboiled cassava chips.	
14	R.C. Ray, G. Padmaja and S.N. Moorthy	Extracellular rhodanese production by <i>Rhizopus oryzae</i>	Zentralbl. Mikrobiol. 145. 259-268,1990
15	R.C. Ray, G. Padmaja and C. Balagopalan	Simultaneous colorimetric determination of thiosulphate and thiocyanate in the culture medium of <i>Rhizopus oryzae</i>	Journal of Microbiological Methods 12, 189-195,1990
16	Mathew George, G. Padmaja and S. N. Moorthy	Enhancement in starch extractability from cassava (<i>Manihot esculenta</i> Crantz) tuber through fermentation with a mixed culture inoculum	Journal of Root Crops 17(1): 1-9,1991
17	S.N. Moorthy, Mathew George and G. Padmaja	Functional properties of starchy flour from cassava on fermentation with a mixed culture inoculum	
18	Mathew George, S.N. Moorthy and G. Padmaja	Biochemical changes in cassava tuber during fermentation and its effect on extracted starch and residue	Food and Agriculture (UK) 69: 367-371, 1995
19	Sheeba Ravi and G. Padmaja	Mechanism of cyanogens reduction in cassava roots during cooking	
20.	C.S. Easwari Amma, G. PadmajaPadmaja and P.K. Thankamma Pillai	Performance of top cross selections of cassava	Journal of Root Crops 19(1): 29-34, 1993
21	R.B. Nair, B. Vimala, G.G. Nayar and G. Padmaja	R- 80/168: A new high carotene short duration hybrid in sweet potato	
22	M.R. Rekha, G.Padmaja and P.K. Thankamma Pillai	Cultivar differences in the apparent amylase inhibitory activity of taro tubers	J. Root Crops 23(1), 39-44, 1997
23	K. Sasikiran, G.Padmaja and P.K.Thankamma Pillai	Biological variations in the apparent proteinase inhibitory activities of root crops. I. Trypsin inhibitory activity of taro tubers	1
24	K.Sasikiran, G.Padmaja and P.K.Thankamma Pillai	Biological variations in the apparent proteinase inhibitory activities of root crops. II. Chymotrypsin inhibitory activity of taro tubers	J. Root Crops. 23(1), 51-56, 1997
25	M.R. Rekha, G.Padmaja , C.S.Easwari Amma and M.N.Sheela	Cultivar differences in the alpha amylase inhibitor activity of sweet potato and yam tubers.	J. Root Crops, 25(2), 185- 191, 1999
26	K. Sasikiran, G.Padmaja , C.S.Easwari Amma and M.N.Sheela	Trypsin and chymotrypsin inhibitor activities of sweet potato and yam tubers	J. Root Crops, 25(2), 95-101, 1999

27	K. Sasikiran, M.R. Rekha and	Proteinase and alpha-amylase	Botanical Bulletin of
	G.Padmaja	inhibitors of sweet potato:	Academia Sinica, China, 43:
		changes during growth phase,	291-298, 2002
		sprouting and wound induced alterations.	
28	M.R. Rekha and G.Padmaja	Alpha amylase inhibitor	Plant Foods for Human
20	MIR. Rekha and Git aumaja	changes during processing of	
		sweet potato and taro tubers	2002
29	K. Sasikiran and G.Padmaja	Inactivation of trypsin	Plant Foods for Human
		inhibitors in sweet potato and	Nutrition, 58, 153-163, 2003
		taro tubers during processing.	
30	G.Padmaja , K. Sasi Kiran,	Proteinaceous enzyme	J. Root Crops, 25(2), 1-25,
	M.R. Rekha and	inhibitors in root and tuber	1999
	S.Pradeepkumar	crops: An overview	
31	M. R. Swain,	Partial characterization and	Polish Journal of
	S. Kar,	optimization of extracellular α	Microbiology 55: 289-296,
	G. Padmaja and	-amylase from Bacillus subtilis	2006
	R. C. Ray	isolated from cowdung	
20		microflora	
32	M.R. Rekha, K. Sasi Kiran, S.	Alpha-amylase and proteinase	J. Root Crops 26 (1): 43 –
	Pradeep kumar and G.Padmaja	inhibitors of sweet potato and	47, 2000
33	S.N. Moorthy and C. Dadmaia	taro: changes during storage	I Boot Crops (Special
33	S.N. Moorthy and G. Padmaja	Comparative study on digestibility of raw and cooked	J. Root Crops (Special Issue), 17; 255-258,1990.
		starch of different tuber crops	13suc), 17, 255-256,1790.
34	K. Sasi Kiran, M.R. Rekha and	Wound-induced alterations in	J. Root Crops 28 (2): 47-51.
51	G.Padmaja	the proteinase inhibitor levels	2002
	······································	in sweet potato and taro tubers	
35	G. Padmaja, C. Balagopalan,	Yuca Rava and Yuca Porridge:	Cassava Flour and Starch:
	S.N. Moorthy and V.P. Potty	The functional properties and	Progress in Research and
		quality of two novel cassava	Development, CIAT, Cali,
		food products	Colombia, pp. 323-330, 1996
36	M.R. Rekha, K. Sasi Kiran and	Inhibitor potential of protease	J. Stored Products Research
	G. Padmaja	and alpha- amylase inhibitors	40 : 461-470, 2004
		of sweet potato and taro on the	
		digestive enzymes of storage	
27	K Saai Kiron M.D. Daltha and	pests Purification and partial	International Journal of Food
37	K. Sasi Kiran, M.R. Rekha and G. Padmaja	Purification and partial characterization of proteinase	Properties 7(2): 185-199,
	G. I aumaja	and α -amylase inhibitors from	2004 (2): 183-199,
		lesser yam (Dioscorea	2004
		esculenta)	
38	S.N. Moorthy and G. Padmaja	A rapid titrimetric method for	J. Root Crops 28(1), 31-38,
20		the determination of starch	2002
		content of cassava tubers	
39	S. Pradeep Kumar, K Sasi Kiran,	Physico-chemical properties of	Trends in Carbohydrate
	S.N. Moorthy and G. Padmaja.	arrowroot starch during growth	-
		phase	2003
40	G. Padmaja, M.R. Rekha, K.	In vitro digestibility,	Trends in Carbohydrate

	Sasi Kiran and S.N. Moorthy	biochemical and viscometric	Chemistry, 8: 197 – 201,
	Sasi Kiran and S.N. Wooruny	properties of starch and flour	2003
		from sweet potato extracted	2005
		using organic acids	
41	Regy Johnson, S.N. Moorthy	Optimized parameters for the	J. Root Crops 31 (1) : 7-13,
	and G. Padmaja	enzyme catalysed liquefaction	2005
		and saccharification of sweet	
		potato starch	
42	S. Jisha, and G. Padmaja	Nutritional characteristics of	J. Root Crops 31 (1): 40-49,
	, v v	cassava based composite flours	2005
43	G. Padmaja and M.S. Sajeev	Compositional differences	J. Root Crops 32(2): 115-
		affecting the nutritional and	122, 2006.
		textural qualities of fried	
		products from cassava based	
		composite flours	
44	Sreekumari, M.T., Abraham, K.,	'Sree Kiran' – an improved	÷ · · ·
	Padmaja, G. and Suja, G	taro hybrid	145, 2006.
45	S. Jisha, G. Padmaja, S. N.	Pre- treatment effect on the	Innovative Food Science and
	Moorthy and K. Rajeshkumar	nutritional and functional	Emerging Technologies, pp.
		properties of selected cassava-	587-592, 2008.
16		based composite flours.	
46	S. Jisha and G. Padmaja	Dietary fibre enhancement in	
		cassava based composite	2008.
17	C Labelani C C Dharan	flours through fortification.	
47	S. Lakshmi, G. S. Dhanya,	Inhibitory effect of an extract	2
	Beena Joy, G. Padmaja and Remani, P	from <i>Curcuma zedoaria</i> on human cervical carcinoma	Research 17, 335-344, 2008
	Kellialli, F	cells.	
48	S. Pradeepkumar, G. M. Nair	Wound Induced Alterations in	J. Root Crops, 34 (2); 172-
	and G. Padmaja	Phenols and their Oxidising	180, 2008.
		Enzymes in Arrowroot	
49	S. Pradeepkumar, G. M. Nair		J. Root Crops, 34 (2); 164-
	and G. Padmaja	characterization of peroxidases	171, 2008.
		from arrowroot (Maranta	
		arundinacea L.) leaves	
50	Jisha, S., G. Padmaja and M.S.	Nutritional and textural studies	Journal of Food Quality,
	Sajeev.	on dietary fiber enriched	DOI:10.1111/j.1745-
		muffins and biscuits from	4557.2010.00313.x.
		cassava based composite	
		flours.	
51	Jisha, S. and G. Padmaja.	Whey protein concentrate	Food and Bioprocess
		fortified baked goods from	Technology: An
		cassava based composite	International Journal 4:92-
		flours: Nutritional and	101, 2008.
50	Linha C C Dadmata C N	functional properties.	I Food Soi Toobrol 46 (6)
52	Jisha, S., G. Padmaja, S.N.	Textural and rheological	
	Moorthy and M.S. Sajeev.	properties of Whey protein concentrate fortified baked	532-537, 2008.
		goods from cassava based composite flours:	
			1

53	Jisha, S.and G. Padmaja.	Dietary fibre enhancement in	± • • •
		cassava based composite flours through fortification.	26-33, 2008.
54	Jisha, S., J.T. Sheriff and G. Padmaja.	Nutritional and functional properties of extrudates from blends of cassava flour with cereal and legume flours.	International Journal of Food Properties. 13: 1002-1011, 2008.
55	Regy Johnson, G. Padmaja and S.N. Moorthy	Comparative production of glucose and high fructose syrup from cassava and sweet potato roots by direct conversion techniques.	Technologies 10: 616–
56	Regy Johnson, S.N.Moorthy and Padmaja, G	Production of High Fructose Syrup from Cassava and Sweet Potato Flours and their Blends with Cereal Flours,	FoodScienceandTechnology:International,16:251-258,2010.
57	Jisha, S., Sheriff, J.T. and Padmaja, G .	Nutritional and functional properties of extrudates from blends of cassava flour with cereal and legume flours.	International Journal of Food Properties. 13: 1002-1011, 2010.
58	Jyothi. G.Krishnan. G.Padmaja . S.N.Moorthy and G.Suja	Biochemical changes in cream and orange-fleshed cured sweet potatoes cooked under different modes.	J. Root Crops, 2011, 37 (1), 65-76, 2011.
59	Jisha, S. and Padmaja, G.	Whey protein concentrate fortified baked goods from cassava based composite flours: Nutritional and functional properties.	Technology: An International Journal 4:92-
60	Shanavas, S., Padmaja, G., Moorthy, S.N., Sajeev, M.S and Sheriff, J.T.	Process Optimization for Bioethanol Production from Cassava Starch using Novel Eco-friendly Enzymes.	65
61	Divya Nair, M.P., Padmaja, G and Moorthy, S.N.	Biodegradation of Cassava Starch Factory Residue using a Combination of Cellulases, Xylanases and Hemicellulases.	Biomass & Bioenergy 35: 1211-1218, 2011.
62	Jyothi. G.Krishnan, G.Padmaja , S.N.Moorthy, G.Suja and M.S.Sajeev.	Effect of pre-soaking treatments on the nutritional profile and browning index of sweet potato and yam flours.	Inno. Food Sci. Emerg. Technologies. 11: 387–393, 2010.
63	Jyothi G Krishnan, Renjusha Menon, Padmaja G , Sajeev MS and Moorthy SN.	Evaluation of nutritional and Physico mechanical properties of dietary fibre enriched sweet potato pasta.	European Food Research and Technology. 234:467–476, 2012.
64	Jyothi G Krishnan, Renjusha Menon, Padmaja G , Sajeev MS and Moorthy SN.	Nutritional and Functional characteristics of protein fortified pasta from sweet potato.	Food and Nutrition Sciences.2, 944-955, 2011.
65	Regy Johnson and G. Padmaja.	Utilization of cassava fibrous	Industrial Biotechnology,

		residue for the production of glucose and high fructose syrup.	7(6): 448-455. 2011.
66	Divya Nair, M.P., Padmaja, G., Sajeev, M. S and Sheriff, J.T.	Bioconversion of cellulo- starch waste from cassava starch industries for ethanol production using pretreatment techniques and improved enzyme systems.	0,77
67	Renjusha Menon, G. Padmaja, M.S. Sajeev and J.T. Sheriff.	Effect of Fortification with Different Starches on Starch Digestibility, Textural and Ultrastructural Characteristics of Sweet Potato Spaghetti.	L

Books/ Book chapters

1. C. Balagopalan, **G. Padmaja**, S.K. Nanda and S.N. Moorthy, 1988. "Cassava in Food,Feed and Industry". CRC Press, Florida, U S A.

2. G.Padmaja.1994. Utilization of Tuber Crops. In: Advances in Horticulture: (Eds. Chadha K.L and Nayar. G.G), Malhotra Publishing House, New Delhi. pp.609-676

3. G. T. Kurup, M. S. Palaniswami, V. P. Potty, **G. Padmaja**, S. Kabeerathumma and Santha V. Pillai. 1996. Tropical tuber crops : Problems, Prospects and Future strategies. Oxford & IBH, New Delhi.

4. C. Balagopalan, S. N. Moorthy, **G. Padmaja**, S. K. Nanda, Bala Nambisan, T. Premkumar, S. Sundaresan ,Lila Babu, Mathew George, J. T. Sheriff, R. C. Ray, B. Shanthi, M. S. Sajeev and A.N. Jyothi. 2000. Integrated Technologies for the value addition and Post Harvest Management in Tropical tuber Crops. CTCRI, pp.147.

5. **Padmaja, G.**, Moorthy, S.N., Bala Nambisan, Lila Babu, Sundaresan, S., Sajeev, M.S., Nanda, S.K., Susan John, K., Rajaleshmy, L., Sudha Devi, K.S. and Manikantan Nair, M. 2005. Analytical Methodologies for Tropical Tuber Crops. Laboratory Manual Series 02, CTCRI, Thiruvananthapuram.

6. **G.Padmaja** 1996 3. Post harvest problems and utilization potential of tropical tuber crops. In: Issues in Horticulture Vol-6: (Ed. Chadha K.L), Malhotra Publishing House, New Delhi, 415-450.

7. **G.Padmaja** and Mathew George. 1999. Oriental Fermented Foods (Chapter 2) In: Biotechnology: Food Fermentation (Microbiology, Biochemistry and Technology: (Eds. Joshi. V.K and Ashok Pandey).Educational Publishers and Distributers, New Delhi. pp.523-582.

8. **G. Padmaja**. 2009. Book Chapter on 'Uses and Nutritional data of Sweet potato' In: The Sweet potato (Gad Loebenstein and George Thottappilly, Eds.), Springer Publications, pp. 189-234.

9. **G. Padmaja**, J. T. Sheriff and M. S. Sajeev. 2012. Food and nutritional benefits of sweet potato. In: Fruit, Vegetable and Cereal Science and Biotechnology, 6 (Special issue 1), 115-123, 2012.

10. A. N. Jyothi, M. S. Sajeev, **G. Padmaja** and S. K. Naskar. Biodegradable Nanocomposite Materials for Food Packaging, In: Nanotechnology in Agriculture (Eds: Singh, H. P. Anilkumar and Parthasarathy, V. A.), Westville Publishers, New Delhi, 2012.

11. **G. Padmaja** and A. N. Jyothi. Roots and Tubers, In: Valorization of Food Processing By-products (Ed. M. Chandrasekaran), CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2013, pp 378-414.

12. **G.Padmaja et al., Analytical Methodologies for Tropical Tuber Crops**, 2005, St. Joseph's Press, Thiruvananthapuram

Annexure III

Technical Bulletins

- 1. C.Balagopalan and G. Padmaja. Cassava Spoilage and Preservation. 1982. Technical Bulletin Series No.3,CTCRI, Trivandrum
- G.Padmaja, C.Balagopalan, V.P.Potty and R.C. Ray. 1993. Nutritional Improvement of cassava Products using Microbial Techniques for Animal Feeding. Technical Bulletin Series No.17. CTCRI, Trivandrum.
- G. Padmaja ,1999. Cassava Ensiling. Technical Bulletin Series: 27, CTCRI, pp. 26
- 4. G. Padmaja and T. Premkumar, 2002. Tuber crop recipes. Technical Bulletin Series: 36, CTCRI, pp 25.